Problem: 0(1(1(x1))) -> 0(1(2(3(4(1(x1)))))) 0(1(1(x1))) -> 1(3(1(3(4(0(x1)))))) 0(1(1(x1))) -> 5(1(3(0(3(1(x1)))))) 0(1(4(x1))) -> 0(1(3(4(x1)))) 0(1(4(x1))) -> 1(3(4(2(0(x1))))) 0(1(4(x1))) -> 1(5(3(4(0(x1))))) 0(1(4(x1))) -> 3(1(3(4(0(x1))))) 0(1(4(x1))) -> 1(1(5(3(4(0(x1)))))) 0(1(4(x1))) -> 1(2(3(4(3(0(x1)))))) 0(1(4(x1))) -> 1(3(3(4(4(0(x1)))))) 0(1(4(x1))) -> 1(3(4(5(0(5(x1)))))) 0(1(4(x1))) -> 3(4(5(5(0(1(x1)))))) 1(2(4(x1))) -> 1(2(3(4(1(x1))))) 1(2(4(x1))) -> 5(3(4(1(2(x1))))) 1(2(4(x1))) -> 1(5(2(3(4(3(x1)))))) 1(2(4(x1))) -> 2(3(3(4(5(1(x1)))))) 5(2(1(x1))) -> 1(2(2(3(5(4(x1)))))) 5(2(1(x1))) -> 1(3(2(5(3(4(x1)))))) 5(2(4(x1))) -> 0(5(2(3(4(x1))))) 5(2(4(x1))) -> 5(5(3(4(2(x1))))) 5(2(4(x1))) -> 0(3(4(4(5(2(x1)))))) 5(2(4(x1))) -> 2(2(5(3(4(4(x1)))))) 5(2(4(x1))) -> 2(3(3(4(5(5(x1)))))) 5(2(4(x1))) -> 2(3(4(3(5(3(x1)))))) 5(2(4(x1))) -> 2(5(3(4(0(5(x1)))))) 5(2(4(x1))) -> 3(1(2(5(3(4(x1)))))) 5(2(4(x1))) -> 5(2(3(4(0(3(x1)))))) 0(0(2(4(x1)))) -> 0(4(3(0(2(x1))))) 0(1(1(5(x1)))) -> 0(1(3(5(1(2(x1)))))) 0(1(2(4(x1)))) -> 0(1(2(3(3(4(x1)))))) 0(1(4(5(x1)))) -> 3(4(0(5(1(x1))))) 0(1(4(5(x1)))) -> 3(4(5(3(0(1(x1)))))) 0(4(2(1(x1)))) -> 0(4(1(2(3(4(x1)))))) 0(5(1(4(x1)))) -> 0(0(3(5(4(1(x1)))))) 1(0(1(4(x1)))) -> 3(4(0(1(2(1(x1)))))) 1(1(2(4(x1)))) -> 1(3(4(1(2(x1))))) 1(2(2(4(x1)))) -> 2(2(2(3(4(1(x1)))))) 1(2(4(2(x1)))) -> 1(2(3(4(2(3(x1)))))) 1(5(2(1(x1)))) -> 1(0(3(5(1(2(x1)))))) 1(5(2(4(x1)))) -> 3(2(3(5(1(4(x1)))))) 1(5(2(4(x1)))) -> 5(2(3(3(1(4(x1)))))) 5(0(1(4(x1)))) -> 3(4(0(5(3(1(x1)))))) 5(2(5(1(x1)))) -> 3(5(1(5(2(x1))))) 0(1(1(5(4(x1))))) -> 0(0(5(4(1(1(x1)))))) 1(0(0(2(4(x1))))) -> 0(2(0(4(4(1(x1)))))) 1(0(4(2(1(x1))))) -> 1(2(3(4(1(0(x1)))))) 1(2(5(0(1(x1))))) -> 2(3(5(1(0(1(x1)))))) 1(5(3(0(4(x1))))) -> 5(1(3(4(0(4(x1)))))) 5(0(5(2(4(x1))))) -> 4(0(0(5(5(2(x1)))))) 5(3(2(4(2(x1))))) -> 2(1(5(3(4(2(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6,5,4} transitions: 21(187) -> 188* 21(122) -> 123* 21(87) -> 88* 21(27) -> 28* 21(189) -> 190* 21(71) -> 72* 21(56) -> 57* 21(41) -> 42* 21(16) -> 17* 21(123) -> 124* 21(43) -> 44* 21(195) -> 196* 21(170) -> 171* 11(25) -> 26* 11(197) -> 198* 11(17) -> 18* 11(19) -> 20* 11(171) -> 172* 11(28) -> 29* 11(13) -> 14* 51(167) -> 168* 51(137) -> 138* 51(102) -> 103* 51(67) -> 68* 51(57) -> 58* 51(169) -> 170* 51(149) -> 150* 51(114) -> 115* 51(151) -> 152* 51(121) -> 122* 51(101) -> 102* 51(31) -> 32* 51(143) -> 144* 51(138) -> 139* 51(88) -> 89* 31(70) -> 71* 31(65) -> 66* 31(55) -> 56* 31(30) -> 31* 31(15) -> 16* 31(172) -> 173* 31(152) -> 153* 31(117) -> 118* 31(69) -> 70* 31(59) -> 60* 31(186) -> 187* 31(166) -> 167* 31(141) -> 142* 31(86) -> 87* 31(53) -> 54* 31(140) -> 141* 31(120) -> 121* 31(100) -> 101* 41(85) -> 86* 41(97) -> 98* 41(139) -> 140* 41(119) -> 120* 41(99) -> 100* 41(54) -> 55* 41(29) -> 30* 41(14) -> 15* 41(116) -> 117* 41(91) -> 92* 41(153) -> 154* 41(68) -> 69* 41(185) -> 186* 41(165) -> 166* 41(115) -> 116* 01(184) -> 185* 01(164) -> 165* 01(89) -> 90* 12(213) -> 214* 00(2) -> 4* 00(1) -> 4* 00(3) -> 4* 32(218) -> 219* 32(215) -> 216* 32(210) -> 211* 10(2) -> 5* 10(1) -> 5* 10(3) -> 5* 22(217) -> 218* 22(212) -> 213* 22(211) -> 212* 20(2) -> 1* 20(1) -> 1* 20(3) -> 1* 52(209) -> 210* 52(216) -> 217* 30(2) -> 2* 30(1) -> 2* 30(3) -> 2* 42(208) -> 209* 40(2) -> 3* 40(1) -> 3* 40(3) -> 3* 50(2) -> 6* 50(1) -> 6* 50(3) -> 6* 1 -> 143,91,59,41,19 2 -> 137,85,53,27,13 3 -> 149,97,65,43,25 14 -> 67* 17 -> 189* 18 -> 20,29,67,5 20 -> 14* 26 -> 14* 28 -> 114,99 32 -> 20,29,67,5 42 -> 28* 44 -> 28* 54 -> 195,184,151 58 -> 17* 60 -> 54* 66 -> 54* 72 -> 20,29,67,5 86 -> 119* 87 -> 169* 90 -> 115,144,138,6 92 -> 86* 98 -> 86* 102 -> 197* 103 -> 115,144,138,6 118 -> 89* 124 -> 152,115,144,138,6 138 -> 164* 142 -> 123* 144 -> 138* 150 -> 138* 154 -> 141* 168 -> 123* 173 -> 115,144,138,6 188 -> 102* 190 -> 71* 196 -> 14* 197 -> 208* 198 -> 123* 209 -> 215* 214 -> 139* 219 -> 213* problem: Qed